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Abstract
Identifying students facing difficulties and providing 
them with timely support is one of the educator's 
key responsibilities. Yet, this task is becoming in-
creasingly challenging as the complexity of physical 
learning spaces grows, along with the emergence 
of novel educational technologies and classroom 
designs. There has been substantial research and 
development work focused on identifying student 
social behaviours in digital platforms (eg, the learn-
ing management system) as predictors of academic 
progression. However, little work has investigated 
such relationships in physical learning spaces. This 
study explores the potential of using wearable track-
ers for the early detection of low- progress students 
based on their social and spatial (socio- spatial) 
behaviours at the school. Positioning data from 98 
primary school students and six teachers were au-
tomatically captured over a period of eight weeks. 
Fourteen socio- spatial behavioural features were 
extracted and processed using a set of machine 

www.wileyonlinelibrary.com/journal/bjet
mailto:
https://orcid.org/0000-0003-3818-045X
http://creativecommons.org/licenses/by-nc/4.0/
mailto:lixiang.yan@monash.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbjet.13203&domain=pdf&date_stamp=2022-02-17


2 |   YAN et al.

INTRODUCTION

The early identification of students who may be facing challenges that can slow down their 
progress in their learning journeys is critical for teachers to provide them with timely support 
(Gray & Perkins, 2019). Timely and appropriate support can then translate into improved 
student engagement and achievement (Klem & Connell, 2004). Advances in learning an-
alytics have made it possible to create a range of early- warning systems that can identify 

learning classifiers to model students’ learning pro-
gression. Results illustrate the potential of prospec-
tively identifying low- progress students from these 
features and the importance of adapting classroom 
learning analytics to differences in pedagogical 
designs.

K E Y W O R D S
multimodal learning analytics, positioning tracking, predictive 
learning analytics, proximity, student progression

Practitioner notes

What is already known about this topic
• Learning analytics research on predicting students’ academic progression is 

emerging in both digital and physical learning spaces.
• Students’ social behaviours in learning activities is a key factor in predicting their 

academic progression.
• Emerging sensing technologies can provide opportunities to study students’ real- 

time social behaviours in physical learning spaces.
What this paper adds
• Fourteen progression- related socio- spatial behavioural features are extracted 

from students’ physical (x- y) positioning traces.
• Predictive learning analytics that achieved 81% accuracy in prospectively identify-

ing low- progress students from their real- time socio- spatial behaviours.
• Empirical evidence to support the need for classroom learning analytics to have 

instructional sensitivity (ie, be calibrated according to the learning design).
Implications for practice and/or policy
• Sensing technologies and machine learning algorithms can be used to capture 

and generate valuable insights about higher- order learning constructs (eg, perfor-
mance and collaboration) from students' physical positioning traces in classrooms.

• Researchers and practitioners should be cautious with generalised classification 
algorithms and predictive learning analytics that do not account for the pedagogi-
cal differences between different subjects or learning designs.

• Researchers and practitioners should consider the potentially unforeseen ethical 
issues that can emerge in using sensing technologies and predictive learning ana-
lytics in authentic, physical classroom settings.
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low- progress students based on their behaviour (Nam & Samson, 2019). The majority of 
these early- warning tools rely on prior information about the students and behavioural 
traces digitally captured from online learning platforms (Hellas et al., 2018). For example, 
predictions on student outcomes have been made based on student behaviours in MOOCs 
(Tomkins et al., 2016) and the LMS (Zacharis, 2015). However, little progress has been 
made in prospectively detecting low- progress students based on their activity in physical 
learning spaces.

Analysing physical trace data can serve to generate a deeper understanding of the 
growing complexity of learning spaces. These are being constantly enriched with novel 
digital technologies (Goodyear, 2020) and (re- )shaped according to emerging architectural 
approaches (eg, open learning spaces; Reh et al., 2011), which are challenging current 
pedagogical practices. Emerging sensing and analytic tools can potentially be created to 
help teachers cope with this complexity by automatically identifying students who may need 
closer attention. As sensing technologies are becoming ready for their widespread use in 
educational applications (Chua et al., 2019), analysing students’ physical positioning data 
traces can be a promising direction to characterise students’ social and spatial behaviours 
(socio- spatial) in the classroom. These traces can serve to extract indicators of student 
interaction with peers and teachers (Chng et al., 2020; Martinez- Maldonado, Echeverria, 
et al., 2020; Yan et al., 2021), physical activity (Saquib et al., 2018), sustained engagement 
(Chin et al., 2017; Chng et al., 2020), and help- seeking behaviours (Fernandez Nieto et al., 
2021), all closely related to learning progression.

This paper presents a study that explores the potential of using wearable, indoor posi-
tioning trackers for automatically mapping socio- spatial behaviours of low- progress stu-
dents at the school level from low- level proximity traces. Positioning data from 98 primary 
school students and six teachers were automatically captured over eight weeks using 
wearable trackers (called wearables for short). Based on the theoretical foundations of 
proxemics (Hall, 1966), measures of proximity among students and teachers were ob-
tained. Based on these, fourteen socio- spatial behavioural features were extracted and 
processed using a set of machine learning classifiers to model student learning progres-
sion. To our knowledge, this is the first longitudinal study exploring the potential of model-
ling physical proximity traces in identifying low- progress students. This paper contributes 
to addressing this gap by exploring whether it is possible to model social interactions from 
physical positioning data with the purpose of identifying potentially low- progress students 
prospectively.

LITERATURE REVIEW

Students’ social behaviours have been frequently investigated to predict student progres-
sion in online learning platforms (see review in Hellas et al. [2018]). Thus far, most of these 
prediction models have been applied to digital traces captured from online learning systems, 
such as digital forums, to estimate educational constructs like students’ social interaction 
and social presence in a course (Brinton & Chiang, 2015; Joksimovic et al., 2015; Tomkins 
et al., 2016; Zacharis, 2015). By contrast, early detection of low- progress students in physi-
cal learning spaces has mainly relied on static data sources such as student demographics, 
prior progression, and psychometrics (Hellas et al., 2018). The potential progression- related 
insights that could be obtained from the analysis of real- time socio- spatial behaviours of 
students remain underexplored. In the remainder of this section, we briefly describe the area 
of study, focusing on understanding how people use the physical space to enable social 
interactions (proxemics), and related educational technology research.
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Theoretical foundation: Proxemics

Recent developments in the learning analytics community have demonstrated the potential 
of automatically modelling socio- spatial behaviours from indoor positioning traces (Chng 
et al., 2020; Martinez- Maldonado, Echeverria, et al., 2020; Yan et al., 2021). These studies 
have built on the theoretical foundation of proxemics, which refers to the study of human 
space usage in social contexts (Hall, 1966). Mondada’s (2013) work on interactional space 
has suggested the use of proximity as a proxy of potential interactions in physical spaces. 
In fact, findings in social psychology have demonstrated that proximity metrics can serve 
to estimate students’ social interaction and the formation of social ties with others (Back 
et al., 2008). This means that, in schools, the physical distance or proximity among students 
and teachers during personal, interpersonal, and group activities can serve as a proxy of 
the social dynamics that emerge according to learning tasks and the characteristics of the 
learning space.

Prior research in social dynamics has illustrated the association between students’ socio- 
spatial behaviours and their academic progression. For example, physical activity within 
learning spaces has been found to be positively associated with students’ cognitive function 
and academic progression (Donnelly et al., 2016). Students’ in- class interactions could re-
flect their social capital and peer relationships, which can be related to higher academic pro-
gression (Gasevic et al., 2013; Wentzel, 2017). Additionally, the probabilities of transitions 
between different interaction states can also hold potentially valuable information about stu-
dents’ learning performance (Chng et al., 2020). The probability of maintaining the same 
interaction state (eg, maintaining interaction with students) can reflect students’ sustained 
engagement in individual or group learning activities, which has been positively related to 
academic attainment in observational classroom studies (Guthrie et al., 2012). Transitions 
between different interaction states (eg, from learning individually to interacting with stu-
dents) can reflect students’ help- seeking behaviours, which have been found to predict their 
grades (Ryan & Shin, 2011). Capturing and modelling these socio- spatial behaviours could 
potentially support teachers to identify low- progress students, whose academic progression 
is lower than the state government indication scores for their year- level. These students 
might experience problems during learning activities and might be at risk of falling behind 
academically.

Sensing technologies and learning analytics

Four types of sensing technologies have been used in studies focused on modelling social 
interaction based on positioning data. Both WiFi (Nguyen et al., 2020) and thermal sensors 
(Brennan et al., 2018) have been used to detect students’ physical presence in classrooms. 
These technologies offer coarse spatio- temporal precision which works well to identify if two 
people are roughly in the same room. They are, however, unsuitable for capturing granular 
socio- spatial behaviours of individual students and teachers. Advances in computer vision 
can offer fine granularity of positioning data. For example, Chng et al. (2020) and Ahuja 
et al. (2019) used Kinect sensors and video cameras (respectively) to capture motion and 
posture data, which were then translated to x- y coordinates using a reference grid system, 
and further estimated proximity among students and teachers. However, this method is lim-
ited to either lecture- style or small classroom spaces since visual occlusion can damper 
the precision and continuity of the positioning tracking in larger and more dynamic learning 
spaces (ie, at a school; Martinez- Maldonado, Mangaroska, et al., 2020).

The fourth approach to capture students’ positioning data involves using wearable track-
ers. Martinez- Maldonado, Mangaroska, et al. (2020) used sensors worn around the waist to 
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automatically capture teachers’ movement and positioning strategies in a classroom. Saquib 
et al. (2018) also used tiny wearable trackers attached to students’ and teachers’ shoes to 
visualise the physical dynamics in a Montessori school. Similarly, Yan et al. (2021) also 
used wearable trackers in the form of wristbands to capture individual social interactions 
and group social dynamics in large learning spaces, but their discussion limited to model 
behaviours for descriptive purposes using unsupervised techniques.

Research gap and research questions

The studies presented above jointly demonstrate the potential of using wearables to capture 
multiple spatial behaviour features from fine- grained positioning data. However, none of 
these studies has explored the potential of automatically modelling socio- spatial behaviours 
in order to identify low- progress students (using supervised machine learning techniques), 
despite the long records of significant relationships between socio- spatial behaviours and 
student progression (further elaborated in the next section). Thus, to explore this potential 
implication, the following research questions are investigated:

RQ1. Do students’ socio- spatial behaviours captured using wearables exhibit significant 
relationships with their academic progression?
RQ2. How accurately can students’ socio- spatial behaviours be modelled to identify low- 
progress students prospectively?
RQ3. What are the most important socio- spatial behavioural features that can be used to 
identify low- progress students prospectively?

METHODS

Study context

The current study took place in an open- plan primary school equipped with movable furni-
ture that can be rearranged by teachers and students. Figure 1 shows a section of the open- 
plan learning space and Figure 2 shows the floor plan with live positioning data points from 
students and their teachers in the physical learning space. In this paper, we focus on Maths 
and Reading sessions taught within the building area. In these two subjects, students were 
allocated into four different groups based on their academic progression at the end of their 
previous school year. Each group was assigned to one teacher. However, students could in-
teract with students from other groups at any time since they were all collocated in the same 
open- plan learning space. Our previous work explored how graph- based approaches could 
be used to describe interactions between students and their change over time, finding that 
teachers’ ability grouping strategy has no impact on students’ social interaction preferences 
Yan et al. (2021).

The pedagogical approach for Reading involved several instructed group- based activi-
ties, whereas students could choose to study in groups or individually in Maths. After signing 
informed consents, a total of 98 Year- 6 students (47 females, 49 males, and two unspecified; 
11 to 12 years of age) and six teachers (four full- time teachers, one aide, and one part- 
time teacher; three females and three males) participated in the study. All these students 
took both Math and Reading subjects, and the same teachers taught both subjects. Ethics 
approval was granted by [Anonymous] University and the Department of Education and 
Training of the State of [Anonymous] in [Anonymous]. Parental consent was also obtained 
prior to students’ participation.
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F I G U R E  1  Open- plan learning space with positioning tracking system installed

F I G U R E  2  Floor plan of the open- plan learning space with green and purple dots representing students 
and teachers’ recorded location, respectively
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Apparatus and data collection

A total of 14 Quuppa LD6- L locators (quuppa.com) were placed at various locations on 
the ceilings of the learning spaces and connected to a server running Quuppa's pro-
prietary positioning engine (as illustrated in Figure 1). Each participant was assigned a 
BLE (Bluetooth Low Energy) tag; Tatwah Mango BLE- WB200 wristbands for students and 
Jeewey JW- C1809C card tags for teachers. All tags were individually numbered and pre- 
set to transmit tracking information at 5Hz. The tracking information was received by the 
locators and translated by the tracking algorithms, utilising the Angle- of- Arrival methodol-
ogy (Suryavanshi et al., 2019), into real- time x- y locations, accurate to approximately 200 
mm and 20 ms.

Teachers in the study kept a register of the tag numbers and distributed wristbands 
to the students, recording the identifying number, at the beginning of every school day 
and collecting them back at the end of the day. If a student lost their wristband, a teacher 
gave them a replacement and amended the register. A single data point consists of a time-
stamp, a tracking identifier, and x- y coordinates of the learning space's floor- plan in meters 
(eg, 22/07/2019 11:38:24.000, Student0001, 7.3875, 20.675). A total of 62.15 million data 
points were recorded during Maths (35 sessions) and Reading (23 sessions) over eight 
school weeks from July 22 to September 13, 2019. The average duration of each Maths and 
Reading session was one hour.

Three months after the data collection, students’ academic progression scores for Maths 
and Reading were measured using state- wide standardised testing for the 2019 school year. 
Students with missing progression scores or less than half attendance during the data col-
lection period were excluded from the analysis. The final sample sizes were 96 and 87 stu-
dents for Maths and Reading, respectively.

Data processing and feature extraction

In order to extract socio- spatial behaviour features from fine- grained physical posi-
tioning traces, the dataset was first normalised by averaging data to one data point 
per second. Linear interpolation was then applied to fill in any missing values caused 
by occlusion or temporary detachment of trackers (Gløersen & Federolf, 2016). This 
interpolation was limited to missing values between two valid data points, and for less 
than 60 consecutive missing values; otherwise, students were considered outside of 
the tracking area.

A total of 14 socio- spatial behaviour features were extracted for each student and ses-
sion. These were grouped into three types in relation to (1) body movement, (2) social in-
teraction, and (3) state- transitions (see Table 1 for details). The rationale and extraction 
procedures for each feature are elaborated on below.

Movement features

Physical activity can be extracted from students’ physical positioning traces by calculating the 
time and distance of walking. DistanceMoved in a session was calculated as the sum of the 
Euclidean distance between a students’ current and previous position on a one- second basis. 
TimeMoved was calculated as the sum of all the seconds for which DistanceMoved is greater 
than zero.
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Interaction features

Previous works (Back et al., 2008; Chng et al., 2020) have estimated the potential 
occurrence of social interactions between two people by measuring the duration of 
collocation based on proximity. To model this, a four- step extraction process was 
performed:

1. Interpersonal distances among all students were extracted by calculating the Euclidean 
distances between each tag. This step involved calculating all possible pair combi-
nations for each second.

2. A potential instance of social interaction was identified if two or more tags were within one- 
meter proximity of each other for more than ten consecutive seconds, as modelled in previ-
ous works (Chng et al., 2020; Martinez- Maldonado, Schulte, et al., 2020; Yan et al., 2021). 
This ten- second constraint minimises the false identification of unintended collocation, for 
example, when teachers are walking around during supervision or two students are pass-
ing by each other (Greenberg et al., 2014).

3. Each second for each student was labelled as I (individual), S (student), or T (teacher) 
representing different types of interaction if the student was alone, near peers or close to 
a teacher, respectively.

4. Three features about student interactions were then extracted by counting the number of 
seconds in each state, including TimeIndividual, TimeStudent and TimeTeacher (Table 1).

State- transition features

A total of nine different state transition features were extracted using Markov chains (Table 1). 
This extraction was performed by calculating a one- step transition matrix with three differ-
ent states, including I, S, and T. For example, the feature I- I represents the probability of a 
student to stay in individual learning. The feature I- S represents the probability of a transition 
from individual learning to learning with other students.

Analysis

Three analyses were performed to investigate the relationships between students’ socio- 
spatial behavioural features and their academic progression.

TA B L E  1  Socio- spatial behavioural features from positioning traces

Behaviours Features Description

Movement DistanceMoved Distance walked (meters)

TimeMoved Time spent in walking motion (seconds)

Interactions TimeIndividual Time the student spent by herself (seconds)

TimeStudent Time spent in close proximity to peers (seconds)

TimeTeacher Time spent in close proximity to a teacher (seconds)

State I- I, S- S, T- T Probability of maintaining in the same state

Transitions I- S, I- T
S- I, S- T
T- I, T- S

Probability of transit from one state to a different state, where:
I— learning individually
S— interacting with other students
T— interacting with teachers
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Correlation analysis— RQ1

A set of correlation analyses has been performed to investigate the linear relationships 
between students’ socio- spatial behaviour features and their academic progression. 
Aggregated averages of each feature were calculated for progression in Maths and Reading 
and normalised to investigate the linear relationship between these features and students’ 
academic progression using Pearson's correlation coefficient. The Bonferroni correction 
method was applied to adjust the significance threshold (initial alpha equal 0.05) for multiple 
comparisons. Significant correlations were summarised into tables to illustrate the set of 
socio- spatial behaviours that are linearly related to students’ academic progression in Maths 
and Reading.

Predictive analytics— RQ2

State- of- the- art machine learning (ML) algorithms were used to early detect low- progress 
students using the socio- spatial behaviour features. The following steps were implemented 
to construct the predictive models:

1. Classifying low- progress students. Students with academic progression scores lower 
than the state government indication scores for their year- level were labelled as 
low- progress and were the positive class in the binary classification. This classifica-
tion strategy was chosen as students who progressed below the state government 
indication scores for their year- level may have been at the risk of falling behind 
academically. This disadvantage could affect their future studies, especially since 
they are reaching the transition from primary to secondary education.

2. Balancing classes. The ratios of low- progress students to other students in both Maths 
and Reading were around 1:2. Thus, to deal with this class imbalance, the current study 
implemented a 3- fold cross- validation (repeated 20 times) and applied the Synthetic 
Minority Oversampling Technique (SMOTE; Chawla et al., 2002) exactly inside the cross- 
validation loop to oversampling the data while preventing potential data contamination 
(Farrow et al., 2019). After applying the SMOTE, the class would be balanced with an 
equal proportion of low- progress students and other students (class ratio 1:1; accuracy 
of dummy models would be 50%) in both Maths and Reading. The 3- fold cross- validation 
was chosen to accommodate the relatively small sample size (98 students) and reduce po-
tential issues of the training set not representing the test set. This also ensures that there 
is sufficient data for the validation sets and the grid search process. Together, these two 
approaches provide more stable and accurate results.

3. Selecting ML classifiers. ML classifiers from the Python Scikit- Learn library (Pedregosa 
et al., 2011) were used to explore the optimal classifiers for identifying low- progress stu-
dents. We used the following three types of ML algorithms that have been commonly used 
for binary classification problems in learning analytics (Hellas et al., 2018): (i) linear classi-
fiers, including logistic regression (LR) and support vector machine (SVM); non- parametric 
classifiers, including random forests (RF) and k- nearest neighbours (KNN); and an artificial 
neural network (ANN) was developed using the multi- layer perceptron algorithm. These 
classifiers were trained separately for Maths and Reading as the pedagogical designs for 
these two subjects were different. All socio- spatial features listed in Table 1 were used in 
each classifier.

4. Evaluating model performance. Model evaluation metrics were used to compare the clas-
sifiers based on prediction performances (including accuracy, precision, recall, and Area 
Under the Curve; AUC) and inter- rater reliability (Cohen's kappa; k). Grid Search was 
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used for hyperparameter tuning to optimise recall and minimise false negatives (Joseph, 
n.d.). Details of the hyperparameter used for each model are available in the Appendix. 
The ultimate goal is to avoid incorrect low- progress classifications, which would misdirect 
teachers and leave these students unattended and without help. The mean and standard 
deviation (SD) of these metrics are reported as average values across each iteration of 
cross- validation.

Feature evaluation— RQ3

Each feature's contribution to the prediction was assessed using the Shapley values to en-
hance interpretability (Strumbelj & Kononenko, 2014). This metric was chosen because the 
Shapely Additive Explanation (SHAP) combined all the prior model interpretation techniques 
and was suitable for explaining all machine learning classifiers (Lundberg & Lee, 2017). 
SHAP feature analysis is also distinct from other permutation- based evaluations as it pro-
vides the most granular results regarding the feature- level influence on prediction. The best 
performing classifier was chosen as the kernel for running SHAP. Each spatial feature was 
assigned with a SHAP value based on its impact on the model. Based on the SHAP values, 
an additional feature selection process has been conducted to illustrate the model improve-
ments by removing features with little contribution to the models.

RESULTS

Feature correlations— RQ1

In Maths, progression was positively correlated with TimeStudent, I- I, MovedTime, 
MovedDistance, and negatively correlated with S- I and S- T (Table 2, left). In Reading, pro-
gression was positively correlated with I- S, TimeStudent, S- S, and negatively correlated 
with S- I, and TimeIsolate (Table 2, right). These findings can be interpreted as, for exam-
ple, the students who spent more time with other students, showed an increase in their 
academic progression. Although the correlations between progression and three features 
(TimeStudent, S- S, and S- I) were consistent across both subjects, other features were 
subject- dependent. These discrepancies can be explained by differences in pedagogical 
design. For example, TimeIsolate and I- S may be more relevant in the Reading classes 
since high TimeIsolate may indicate less participation in the instructed group activities which 
is against the pedagogical intention of the learning design for Reading, and vice- versa for 
I- S.

Classifier performance— RQ2

The classifiers’ performance is shown in Tables 3 and 4 for Maths and Reading, respec-
tively. Linear classifiers demonstrated better performance than others. In particular, LR with 
a LIBLINEAR solver and a regulation strength of one demonstrated the best performance 
in both Maths and Reading. Likewise, SVM with linear kernel and a regulation strength of 
one showed similar performance. The best classifier could accurately identify around 70% 
and 61% of the low- progress students in Reading and Maths, respectively, based on their 
socio- spatial behaviours. This is above the chance of random guessing (50% for dummy 
classifiers with balanced class after applying SMOTE). This result was expected from the 
moderate correlation results in RQ1, and the results from prior studies (Donnelly et al., 2016; 
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Guthrie et al., 2012; Wentzel, 2017), which all point to linear relationships between these 
features and student progression. The other classifiers (RF, KNN, and ANN) might have 
under- performed due to the relatively small sample size, which could have reduced the 
power of these classifiers to discover complex relationships between the features and stu-
dent progression (Entezari- Maleki et al., 2009).

Despite training the classifiers separately for Maths and Reading, there is still a large 
discrepancy between the classifiers’ performance for these two subjects. For Reading, the 
recall, precision, and Cohen's k values are concerning as these low values can potentially 
indicate high false- positive and false- negative cases, and poor inter- rater reliability. A po-
tential reason behind the under- performing classifiers in Reading could be related to the 
pedagogical differences and irrelevant input features. For example, interaction features (ie, 
TimeStudent) could have a stronger contribution in predicting low- progress students as 
they might contain information about collaborative learning behaviours, which is essential in 
group- oriented reading sessions. Whereas, movement features might be less relevant since 

TA B L E  2  Significant correlations between socio- spatial behavioural features and student progression in 
Maths (left) and Reading (right)

Maths Reading

Features Correlation (r) Features Correlation (r)

TimeStudent 0.49*** TimeStudent 0.36***

MovedTime 0.30** TimeIsolate −0.26*

MovedDistance 0.29** I- S 0.42***

I- I 0.39*** S- S 0.26*

S- S 0.43*** S- I −0.28**

S- I −0.39***

S- T −0.22*

*p < 0.05; **p < 0.01; ***p < 0.001.

TA B L E  3  Model performance before feature selection (Maths): Mean and SD (in parenthesis)

Accuracy Precision Recall Cohen's k AUC

LR 0.77 (0.06) 0.66 (0.06) 0.70 (0.06) 0.50 (0.06) 0.75 (0.06)

SVM 0.75 (0.06) 0.62 (0.06) 0.66 (0.06) 0.44 (0.06) 0.73 (0.06)

RF 0.76 (0.06) 0.65 (0.06) 0.64 (0.06) 0.45 (0.06) 0.73 (0.06)

KNN 0.70 (0.07) 0.54 (0.07) 0.63 (0.07) 0.34 (0.07) 0.68 (0.07)

ANN 0.73 (0.07) 0.61 (0.07) 0.60 (0.07) 0.39 (0.07) 0.69 (0.07)

TA B L E  4  Model performance before feature selection (Reading): Mean and SD (in parenthesis)

Accuracy Precision Recall Cohen's k AUC

LR 0.69 (0.06) 0.45 (0.06) 0.61 (0.06) 0.29 (0.06) 0.66 (0.06)

SVM 0.68 (0.07) 0.44 (0.07) 0.59 (0.07) 0.27 (0.07) 0.65 (0.07)

RF 0.70 (0.07) 0.45 (0.07) 0.41 (0.07) 0.22 (0.07) 0.61 (0.07)

KNN 0.59 (0.09) 0.35 (0.09) 0.58 (0.09) 0.14 (0.09) 0.58 (0.09)

ANN 0.71 (0.08) 0.49 (0.08) 0.50 (0.08) 0.28 (0.08) 0.64 (0.08)
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they contain little information about group learning. These interpretations are supported by 
the findings on feature importance, which are reported in the next section.

Feature importance— RQ3

The results of the feature evaluation through SHAP with the LR kernel (the best performing 
classifier in the prior section) are shown in Figure 3 (Maths) and Figure 4 (Reading).

Features were listed according to their importance and visualised using summary plots 
to illustrate the SHAP value distributions, where lighter blue and darker red represent lower 
and higher feature values, respectively. A positive SHAP value increases the likelihood of 
a student being predicted as low progress, whereas a negative SHAP value decreases this 
likelihood. For example, the T- S feature (see Figure 4) contributes more to increasing the 
likelihood of a student being classified as low- progress than to decreasing this likelihood.

Overall, the selected features had stronger contributions for Maths than for Reading, as 
shown by the narrower and T- shaped distributions in Reading. For both subjects, TimeStudent 
was the most significant feature, and it was negatively associated with the likelihood of a stu-
dent being classified as low progress. That is, students who spent more time with other students 
were less likely to be classified as a low- progress student, and vice- versa. TimeIsolate was also 
a significant feature in both subjects but exhibited a positive association. Other features appear 
to have resonated with the subjects’ pedagogical design. For example, both MovedTime and I- I 
had a significant positive association with Maths but became less relevant for Reading.

After feature selection, models with seven features, including TimeIsolate, TimeStudent, 
S- I, MovedTime, I- I, T- I, and T- S, showed the best performances in Maths (Table 5). LR re-
mained the best performing classifier in accurately identifying low- achieving students (81%). 
For Reading, models with six features, including TimeIsolate, TimeStudent, I- S, S- S, S- T, 
and T- S demonstrated the best performances (74%; Table 6). These performance improve-
ments may indicate the need to select appropriate features that are relevant to the pedagog-
ical design of the learning activities.

F I G U R E  3  SHAP features importance for Maths
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DISCUSSION

As the complexity of physical learning increases, providing teachers with educational tech-
nologies that can assist them in teaching reflection and student supervision become essen-
tial. This paper illustrated the potential of using physical positioning and proximity traces and 
ML classifiers to identify potential low- progress students from their socio- spatial behaviours 
prospectively.

F I G U R E  4  SHAP features importance for Reading

TA B L E  5  Model performance (Maths) with selected features: TimeIsolate, TimeStudent, S- I, MovedTime, 
I- I, T- I, and T- S

Accuracy Precision Recall Cohen's k AUC

LR 0.81 (0.06) 0.71 (0.06) 0.75 (0.06) 0.57 (0.06) 0.79 (0.06)

SVM 0.78 (0.06) 0.66 (0.06) 0.73 (0.06) 0.52 (0.06) 0.77 (0.06)

RF 0.78 (0.06) 0.68 (0.06) 0.67 (0.06) 0.50 (0.06) 0.75 (0.06)

KNN 0.76 (0.06) 0.64 (0.06) 0.68 (0.06) 0.47 (0.06) 0.74 (0.06)

ANN 0.74 (0.06) 0.61 (0.06) 0.66 (0.06) 0.43 (0.06) 0.72 (0.06)

TA B L E  6  Model performance (Reading) with selected feature: TimeIsolate, TimeStudent, I- S, S- S, S- T, and 
T- S

Accuracy Precision Recall Cohen's k AUC

LR 0.74 (0.08) 0.52 (0.08) 0.72 (0.08) 0.41 (0.08) 0.73 (0.08)

SVM 0.73 (0.07) 0.51 (0.07) 0.72 (0.07) 0.4 (0.07) 0.73 (0.07)

RF 0.73 (0.07) 0.53 (0.07) 0.49 (0.07) 0.31 (0.07) 0.66 (0.07)

KNN 0.73 (0.07) 0.52 (0.07) 0.70 (0.07) 0.40 (0.07) 0.72 (0.07)

ANN 0.75 (0.08) 0.55 (0.08) 0.58 (0.08) 0.38 (0.08) 0.69 (0.08)
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Main findings

In response to RQ1, the correlation results (Table 2) were consistent with prior studies and 
contributed new empirical evidence to support student progression's positive relationships 
with social interaction (Gasevic et al., 2013; Wentzel, 2017), physical activity (Donnelly 
et al., 2016), and sustained engagement (Guthrie et al., 2012). These findings can also pro-
vide initial evidence to support the use of wearables to capture progression- related socio- 
spatial behaviour features. These differences in correlations are likely to reflect differences 
in instructional designs. For example, the negative correlation between TimeIsolate and 
student progression in Reading but not Maths may imply that TimeIsolate is a feature that 
successfully captures instructional designs that promote collaborative interactions.

Regarding RQ2, ML classifiers proved more accurate than randomly guessing (accuracy 
of dummy model would be 50%) for both Maths and Reading. Yet, the overall performance 
is lower in Reading than Maths. The poor precision and low inter- rater reliability would impair 
the practical value of the current work in helping teachers to identify low- progress students. 
In particular, classifiers with a high false positive rate would still require teachers to make 
significant efforts to identify the actual low- progress students.

The potential reason behind this poor performance was revealed in the investigation on 
feature importance, through RQ3. Although both subjects shared some important features 
(eg, TimeStudent and TimeIsolate), the low contributing features in Reading could be re-
sponsible for the poor performance. These features (eg, MovedTime and I- I) were less 
relevant in Reading, a subject that uses collaborative learning more often, as part of its ped-
agogical design in this school. Whereas in Maths, students had more autonomy in choosing 
their desired learning format. Consequently, their learning progress could be reflected by 
more varieties of socio- spatial features, resulting in better model performance. Indeed, after 
the feature selection, the model performances for both Maths and Reading have increased.

Thus, the findings from RQ2&3 would oppose generalised classification algorithms 
in physical learning contexts. This finding also emphasises the need to account for the 
pedagogical differences between different subjects and select appropriate features when 
constructing prediction models, which resonates with Gasevic et al.'s (2016) call for course- 
specific models.

Implications

This work has several implications for future research and teaching practice. Firstly, the 
current findings on the significant associations between students’ socio- spatial behaviours 
and their academic performance further stressed the valuable insights contained within stu-
dents’ in- class behaviours. Mining and utilising these insights could be a promising direction 
for future learning analytics research that aims to understand how socio- spatial behaviours 
contribute to academic progression and differentiating influential learning behaviours when 
multiple learning designs are deployed.

However, although wearables and positioning data, alone, are insufficient to provide 
a highly accurate prediction, they do contribute to the growing development of multi-
modal learning analytics (Dich et al., 2018; Worsley & Blikstein, 2018). Combining wear-
ables and positioning data with other educational technologies, such as computer vision, 
natural language processing, and physiological sensors, would further strengthen the 
power of predictive learning analytics in triangulating students’ actual learning progress. 
Additionally, developing and improving these predictive models can also contribute to 
complement the existing explanatory models on student learning (Chng et al., 2020; 
Martinez- Maldonado, Echeverria, et al., 2020; Yan et al., 2021), and further enhance the 
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actionable insights that can be generated from students’ behavioural traces. As the cost 
of these sensing technologies declines, large- scale implementation could become pos-
sible. By then, the automated, non- intrusive, and scalable nature of these sensing tech-
nologies could provide teachers with insights to support and scaffold student learning 
as well as to reflect on their teaching practices and the impact of their learning designs 
across various disciplines.

Ethical considerations

It is vital to consider the ethical issues surrounding the current work and, in general, predic-
tive learning analytics. Labelling students based on data can lead to further marginalising 
students who may already be facing social or learning challenges (Osterholm et al., 2011). It 
can be argued that identifying students who may not socialise much at school or that could 
be flagged by an artificial intelligence algorithm as being “at- risk” may allow teachers to help 
these potentially low- progress students. Yet, this can also create grounds for discrimination 
and unconscious biases. In fact, psychology research has widely and convincingly dem-
onstrated the potential dangers of discrimination resulting from labelling students, such as 
reduced self- esteem in students and expectations in teachers (Higgins et al., 2002). Thus, 
the purpose of predictive learning analytics and how it will be communicated to teachers 
require careful considerations and further work.

As shown in the current work, labelling students should not be universal, instead, it needs 
to be subject- specific with the aim of assisting learning supervision and helping teachers 
to provide timely support. For example, instead of planning an intervention, the teacher 
could reflect on better strategies to improve their learning designs to promote inclusion or 
social interactions. Meanwhile, actionable insights from explanatory models should also be 
made available while communicating results from machine learning algorithms to teachers, 
so they can understand why a student may be flagged as featuring “low- progress”. With 
these additional insights, labelling could initiate the process for identifying and helping low- 
progress students instead of remaining as the end product of predictive algorithms. Most 
importantly, educating teachers about implicit biases and ensuring that they adopt inclusive 
pedagogy principles is essential to minimise labelling's adverse effects (Florian & Black- 
Hawkins, 2011).

Many concerns have also been expressed regarding privacy issues related to sensing 
technologies (Cukurova et al., 2020; Martinez- Maldonado et al., 2018). Given the dilemma 
between the escalated risk of unintended surveillance in capturing data from multiple chan-
nels, and the potential danger of making decisions based on insufficient data, further re-
search is required to understand the unintended consequences of this trade- off more deeply 
and develop regulations for stakeholders who will be in direct contact with these data and 
analytics. Co- designing learning analytics solutions with schools and stakeholders would 
open the space to discuss potential unintended surveillance and design the mechanisms to 
use these technologies with integrity (Martinez- Maldonado, Mangaroska, et al., 2020).

Additionally, future research and potential practical adoption of sensors in physical 
classrooms should also comply with the regulatory requirements proposed by relevant 
government authorities (eg, the European Union General Data Protection Regulation). 
This compliance should involve but not be limited to ensuring data confidentiality, the au-
tonomy of stakeholders, and adopting a transparent data handling procedure (Hoofnagle 
et al., 2019). Encouragingly, parents were very supportive of the current research as ob-
taining parental approval was highly efficient and successful. This phenomenon could re-
sult from the data security procedures that were employed to ensure data confidentiality 
(students’ names were masked) and strictly limited data usage for research purposes. This 
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supportive attitude resonates with findings in the UK, where adults showed favourable 
views about using artificial intelligence to tailor teaching and learning to individuals (Ipsos/
MORI, 2017). A recent study also found that around 71% of Australian adults support the 
use of artificial intelligence to address educational challenges (Selwyn et al., 2020). These 
findings encourage academicians, practitioners, and researchers to further investigate the 
potentials of practically adopting educational technologies to support learning and teaching 
practices.

Limitations and future works

The current findings have two major limitations. First, wearable trackers’ illustrated poten-
tials in identifying low- progress students are limited to open- ended learning spaces and 
flexible classrooms. The lack of spatial movement in lecture- style spaces or classrooms 
with fixed seating would reduce the practicality of positioning data. In these learning con-
texts, exploring the predictive potentials of facial, gesture, and physiological data could be 
more promising (Ahuja et al., 2019; Raca & Dillenbourg, 2013; Sharma & Giannakos, 2020). 
Second, these granular data are at most an estimation of students’ actual behaviours. 
Future studies should validate the accuracy of their granular data in capturing the targeted 
learning behaviour. Additionally, future studies could map from granular data to learn-
ing behaviours and then to individuals’ cognitive process with multimodal data (Dindar 
et al., 2020). This additional step could provide further insights for teachers to understand 
the potential reasons behind students’ low progression and encourage cross- disciplinary 
research. Future works may also adopt a multimodal approach, such as multiple sensor 
data (eg, video, audio, proximity, and biometrics), to triangulate the type of interaction that 
occurred as proximity data, alone, does not contain this information (Martinez- Maldonado, 
Echeverria, et al., 2020; Yan et al., 2021). Moreover, developing dashboards and making 
these socio- spatial analytics available in real- time to support teachers and students is also 
a promising direction. Empirical evidence to support the use of these technological tools 
is emerging from research into teachers’ (Martinez- Maldonado, Mangaroska, et al., 2020) 
and students’ perceptions (Mangaroska et al., 2021) of sensing technologies and learn-
ing analytics. Future works may also explore the predictivity of socio- spatial behaviours 
in other pedagogical factors, such as in- class engagement and role distribution during 
problem- based learning. Lastly, capturing additional demographic information, such as the 
students’ socioeconomic status, may contribute to comprehending the predictive results 
with more contextual insights. However, a delicate balancing act is needed between ethics 
and increased data disclosure.

CONCLUDING REMARKS

As physical learning spaces become increasingly complex, students’ motor and physiologi-
cal traces could contain the key to generating meaningful learning analytics. These insights 
are necessary for assisting teachers in dealing with increased complexity and fulfilling their 
responsibility to support students equally. The current work illustrates the potential of using 
wearable trackers to identify low- progress students from their socio- spatial behaviours. Our 
work contributes to the growing body of classroom learning analytics research and the need 
for these analytics to have instructional sensitivity. In future research, utilising multimodal 
data could further strengthen the predictive and explanatory power of classroom learning 
analytics.
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A PPE N D I X 
Hyperparameters for each Classifier

Classifiers

Hyperparameters

Grid search parameters Model parameters

LR Penalty = [l1, l2, elasticnet, none]
Regularization strength (inverse) = [0.001, 0.009, 

0.01, 0.09, 1, 5, 10, 25]
Solver = liblinear, lbfgs
Random state = 0

Penalty = [l2]
Regularization strength (inverse) = [1]
Solver = liblinear
Random state = 0
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Classifiers

Hyperparameters

Grid search parameters Model parameters

SVM Kernel = linear, poly, rbf, sigmoid
Regularization strength (inverse) = [0.001, 0.009, 

0.01, 0.09, 1, 5, 10, 25]

Kernel = linear
Regularization strength (inverse) = [1]

RF Criterion = [gini, entropy]
Max_features = [auto, sqrt, log2]
Number of estimators = [100, 200, 300, 1000]

Criterion = [gini]
Max_features = [auto]
Number of estimators = [100]

KNN Weights = [uniform, distance]
Metrics = [euclidean, manhattan]
Number of neighbors = [3, 5, 11, 19]

Weights = [uniform]
Metrics = [euclidean]
Number of neighbors = [5]

ANN Solver = [lbfgs, sgd, adam]
Activation = [identity, logistic, tanh, relu]
Alpha = [1e- 5, 1e- 4, 1e- 3, 0.01, 0.1]
Learning_rate = [constant, invscaling, adaptive]
Max_iter = 5000
Hidden layer sizes = [(100), (5,2)]
Random state = 1

Solver = [lbfgs]
Activation = [relu]
Alpha = [1e- 5]
Learning_rate = [constant]
Max_iter = 5000
Hidden layer sizes = [(5,2)]
Random state = 1


